Modern industrial machining environments face new challenges in implementing process monitoring systems to improve energy efficiency
whilst ensuring quality standards. A process monitoring methodology for tool state identification during milling of aluminium has been
implemented through the utilisation of an infrared (IR) camera. A features extraction procedure, based on statistical parameters calculation, was applied to temperature data generated by the IR camera. The features were utilised to build a fuzzy c-means (FCM) based decision making support system utilising pattern recognition for tool state identification. The environmental benefits deriving from the application of the developed monitoring system, are discussed in terms of prevention of rework/rejected products and associated energy and material efficiency improvements.